
DOCUMENT RESUME

ED 057 579 EM 009 419

AUTHOR Feurzeig, Wallace; And Others
TITLE An Introductory LOGO Teaching Sequence: LOGO Teaching

Saquence on Logic, LOGO Reference Manual.
INSTITUTION Bolt, Beranek and Newman, Inc:, Cambridge, Mass.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO R-2165
PUB DATE 30 Jun 71
NOTE 135p.; Programming-Languages as a Conceptual

Framework for Teaching Mathematics, Volume One; See
also EM 009 420, EM 009 421, EM 009 422

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Computer Assisted Instruction; Geometry; Logic;

Manuals; *Mathematics Instruction; *Programing
Languages

IDENTIFIERS Project LOGO

ABSTRACT
In earlier work a programing language, LOGO, was

developed to teach mathematics in the framework of computer programs.
Using LOGO a few programs were tested in both elementary and junior
high school mathematics classrooms with excellent results. The work
reported here is tha first effort to systematically develop extensive
curriculum materials using the LOGO language. This first volume gives
a reference manual on the LOGO language and two of the LOGO teaching
sequences. The short introductory sequence, on teletype geometry, is
one of many possible starting points for studying LOGO. The sequence
on logic is the most advanced of those presented; it has a
sophisticated ability for dealing with syllogistic-type arguments.
For subsequent volumes see EM 009 420, EM 009 421, and EM 009 422.

B O L T B E R A N E K A N D NEWMAN
CONSULTING DEVELOPMENT RESEARCH

CI%

teN Report N . 2165

N
Le`t

C;)

C=3
PROGRAMMING7LANGUAGES AS A 'CONCEPTUAL

FRAMEWORK FOR .TEACHING MATHEMATICS

VolUme 1

An Introduc'tor,y LOGO Teaching Se uence

Teaching SeqUence'on Logi c

'LOG& Aeference

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

I-HIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

Submitted to:

National Sci ence Fo_undation
Office of: COmputing Activities

GStrbet,
Wa'shingiOn'i 0. G. 26550'

,

Contract. N5F-C 615

PROGRAMMING-LANGUAGES AS A CONCEPTUAL

FRAMEWORK FOR TEACHING MATHEMATICS

Final Report on the second fifteen
months of the LOGO Project

Wallace Feurzeig
George Lukas
Philip Faflick
Richard Grant
Joan D. Lukas
Charles R. Morgan
Walter B. Weiner
Paul M. Wexelblat

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

30 June 1971

Submitted to:

National Science Foundation
Office of Computing Activities
1800 G Street, NW
Washington, D. C. 20550

Contract NSF-C 615

2

Report No. 2165 Bolt Beranek and Newman Inc.

CONTENTS

Volume 1

An Introductory LOGO Teaching Sequence-

LOGO Teaching Sequence on Logic

LOGO Reference Manual

Volume 2

LOGO Teaching Sequences on !umbers

and

Functions and Equations

Volume 3

LOGO Teaching Sequences on

Strategy in Problem-Solving

and

Story Problems in Algebra

Volume 4

The LOGO Processor

A Guide for System Programmers

PREFACE

This is the final report of work under Contract NSF-C 615,

"Programming-Languages as a Conceptual Framework for Teaching

Mathematics." In earlier directly-related work, supported by

the Office of Computing Activities, we advanced the thesis that

mathematics could be developed and presented in the framework of

programs, and that this kind of presentation would greatly

enhance teaching and learning. Using the LOGO programming

language designed expressly for this purpose, we tested this

thesis in both elementary and junior high school mathematics

classrooms, obtaining the excellent results we had anticipated.*

The teaching materials used in this earlier work were developed

"on the run" to meet immediate class needs. These materials

were, therefore, unconnected or loosely connected segments of

partially realized designs. The focus of this phase of the work

was on classroom experimentation and testing, not on curriculum
development. It was clear to us from the outset, however, that

extensive curriculum material would eventually be needed. The

object of the work reported here is to take the first steps in

the development of such materials.

For this purpose, we have developed five extended LOGO teachf,,z

sequences and an introductory LOGO sequence. These range over a

variety of elementary mathematical subjects, levels of difficulty.

and mathematical and pedagogic style. This diversity is inten-
tional. We want to illustrate the scope of this new approach to

mathematics and its general accessibility to teachers and

students.

*"Programming-Languages as a Conceptual Framework for Teaching
Mathematics," Final Report on the first fifteen months of the
LOGO Project, Wallace Feurzeig et al, Nov. 1969.

4

The report is composed of four volumes. Volume 1 contains a

reference manual on the LOGO language and two of the LOGO teaching

sequences. The short introductory sequence, on teletype geometry,

is one of many good starting points for studying LOGO. The LOGO

sequence on logic is by far the most a''-anced of those presented

here. In it we develop a sophisticated ability for dealing with

syllogistic-type arguments. The sequence demonstrates that an

extremely complex set of procedures can be evolved in a natural

way.

Volume 2 includes two LOGO teaching sequences treating some

standard mathematical topics -- on the representation of numbers

and the algorithms of/arithmetic, and on functions and equations

-- but incorporating the new viewpoints made possible by the use

of LOGO programs. The sequence on numbers is the most detailed

presentation of the series in accordance with its mathematical

content. Their content and level of difficulty makes these two

sequences well-suited for incorporation into existing curricula.

Volume 3 is comprised of two LOGO teaching sequences on "problem-

solving". One deals with the generation and testing of methods

and strategies. The other treats the problem of translating

between different representations, both formal and informal.

The first sequence uses a variety of mathematical contexts; the

second uses the context of story problems in algebra.

We do not regard the teaching sequences as literal teaching

prescriptions. Rather, we designed them as exemplary materials

to acquaint prospective teachers with the rich mathematical and

pedagogical possibilities inherent in the use of LOGO. The

sequences are intended as source materials for assisting teachers

in the preparation of courses. We think the presentations will

5

be useful in providing teachers general guidelines around which

to make their, own variations and extensions.

Volume 4 of this report stands apart from the other three. It

contains a detailed description of the LOGO processor algorithm.

Tt was written for system programmers and others interested in

the details of LOGO's inner workings. It will facilitate the

implementation of LOGO on computer systems of many kinds.

The main authors of the material in this report are Wallace

Feurzeig, George Lukas, and Richard Grant. Philip Faflick made

major contributions to the number and strategy sequences. Joan

Lukas is a co-author of the logic sequence. Charles R. Morgan

contributed both to the curriculum material and the LOGO system

programming and documentation. Primary work in the latter area

was done by Walter B. Weiner with the assistance of Paul M.

Wexelblat. The demanding technical typing and drawing tasks

were directed and performed by Pearl Stockwell.

Volume 1, Part 1

AN INTRODUCTORY LOGO TEACHING SEQUENCE

The LOGO Project

NSF-C 615

Wallace Feurzeig

George Lukas

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Mass. 02138

AN INTRODUCTORY LOGO TEACHING SEQUENCE

We introduce students to LOGO by developing some procedures

for making pictures, specifically "geometric" figures, on a

teletypewriter. To begin with, we write procedures like the

following, for drawing a rectangle:

TO RECTANGLE

1 PRINT "++++"

2 PRINT

3 PRINT "++++"

END

To use this procedure, we simply type

RECTANGLE

(When we use a procedure we will underscore our typing

to distinguish it from the computer's response)

and LOGO responds:

But this kind of procedure is pointillistic -- the figure is

being specified point by point. To improve upon this, we can

write procedures for drawing line segments of specified length

to serve as building blocks for drawing a number of different

kinds of figures. For example, the following procedures:

TO I+

1 PRINT

END

TO 2+

1 PRINT

END

TO 3+

I PRINT

END

TO 4+

I PRINT "++++"

END

type segments of a single -I- mark, 2 + marks, 3 + marks, and

4 + marks, respectively.

These procedures are immediately used as parts of other, more

interesting procedures for drawing figures of fixed shape and

size. For example, we can describe a two-by-four rectangle,

TO RECTANGLE

I 4+

2 4+

END

To draw the rectangl , we type:

RECTANGLE

++++

++++

:To make a larger rectangle we write:
.1

TO B-IG-RECTANGLE

1 4+

2 BIGRECTANGLE

END

(draw a row)

(and repeat the process)

This procedure will go on indefinitely:

BIG-RECTANGLE

until we forcibly stop it, using the teletype "break" key.

To make a rectangle of specified size, say /N/ rows, we rewrite

BIG-RECTANGLE as follows:

TO BIG-RECTANGLE /N/

1 TEST IS /N/ (If all rows are done)

2 IF TRUE STOP (Stop)

3 4+ (Otherwise, draw a row)

4 BIG-RECTANGLE (DIFF OF /N/ AND 1) (and repeat the process

END /N/-1 more times)

This allows us to draw rectangles with any desired number of

rows, for example:

BIG-RECTANGLE 5

We can also write procedures for drawing triangles:

TO TRIANGLE

1 1+

2 2+

3 3+

4 4+

END

But we run into difficulty when we try to extend this to make

arbitrarily large triangles. We can accomplish this, however,

by writing a single procedure MARK /N/ to type out any specified

number /N/ of marks. By varying the input of this new pro-

cedure, we can draw triangles as well as many other regular

figures.

In fact, we will write two drawing procedur_T-7E-LANK /N/ and---
MARK /N/. The first of thes-c -ty-f-e-s out /N/ blank spaces; the

second types /N/ +Ts and returns the carriage. These two

procedures are virtually identical in form. Thus, for example:

.TO MARK /N/
1 TEST IS /N/ 0
2 IF TRUE SKIP (skip to the. next line)
3 IF TRUE STOP (and stop)
4 TYPE "+" (Otherwise, type a mark)
5 MARK (DIFFERENCE OF IN/ AND 1)(and repeat the process /N/-1
END more times)

(If there are no more marks to tyI

MARK 17

To illustrate the use of these basic procedures, let's write a

procedure to make a little triangle, indented from the left margin.

TO MAKE-A-TRIANGLE
1 BLANK 10
2 MARK 1
3 BLANK 9
4 MARK 3
5 BLANK S
6 MARK 5
END

MAKE-A-TRIANGLE

+++++

This would be a tedious way of describing larger figures. A

considerable improvement comes about from noting that in many

cases we wish to center all rows of marks with respect to the

same interval. We can easily write a procedure to do this. It

will type /N/ marks centered in an interval of length /L/. The

number of spaces it needs to indent before typing is given by

the quotient of (/L/ - /N/) and 2. Oge must compute this to the

nearest integer since we cannot half-space on the teletype.)

In LOGO this is expressed QUOTIENT OF (DIFFERENCE OF /L/ AND /N/)

AND 2.

Now we can write the procedure MIDDLE /N/, for typing +'s in the

middle /N/ spaces of an interval of length /L/.

TO MIDDLE /N/
1 BLANK QUOTIENT OF (DIFFERENCE OF IL/ AND IN!) AND 2
2 MARK /N/
END

Using MIDDLE we can now write MAKE-A-TRIANGLE without worrying

about spacin

12

TO MAKE-A-TRIANGLE
1 MIDDLE 1
2 MIDDLE 3
3 MIDDLE 5
END

MIDDLE has immediate and broad application as a basic procedure

for drawing symmetric figures. To show its utility, let's first

define a procedure for typing a rectangle with /A/ columns and

/B/ rows.

TO RECTANGLE /A/ /B/
1 TEST IS /B/ 0 (If /B/ has become 0,
2 IF TRUE STOP stop)
3 MIDDLE /A/ (Else type /A/ +'s)
4 RECTANGLE /A/ (DIFFERENCE OF /B/ AND 1) (and repeat the proces!
END /B/-1 times)

This procedure executes the command MIDDLE /A/ (which types /A/

centered" +'s) /B/ times.

RECTANGLE 18 3

++++++++++++++++++
++++++++++++++++++
++++++++++++++++++

Rectangles are useful as basic building blocks for composing

other figures. Trapezoids are also useful, particularly for

building many kinds of polygons. And, they include triangles as

a limiting case.

TO TRAPEZOID /A/ /B/ (/A/ and /B/ are the lengths of the two b
1 MIDDLE /A/ (Type /A/ centered +'s)
2 TEST IS /A/ /B/ (If /A/ has become equal to /8/,
3 IF TRUE STOP stop)
4 TRAPEZOID (SUM OF /A/ AND 2) /B/ (Otherwise, repeat the proce
END with /A/ increased by 2)

(Note that this procedure closely parallels that for RECTANGLE.)

-6-

TRAPEZOID 3 9

+++++

+++++++++

TRIANGLE is the limiting case of TRAPEZOID, with /A/ =

TO TRIANGLE IN/
I TRAPEZOID I /N/
END

TRIANGLL 7

Though the TRAPEZOID procedure can be used to draw trapezoids of

different sizes, it can only draw trapezoids with the same interior

angles, because successive rows increase in width from a smaller

to a larger base by a fixed step. TRAPEZOID can be generalized

in a very straightforward way to incorporate a larger class of

trapezoids. All we need do is include the step-size increment

/STEP/ as an input. Doing this, the definition becomes,

TO TRAPEZOID /A/ /B/ /STEP/
I MIDDLE /A/
2 TEST IS /A/ /B/
3 IF TRUE STOP
4 TRAPEZOID (SUM OF /A/ AND /STEP/) /B/ /STEP/
END

(The only changes have been the inclusion of /STEP/ in the title

line'and in- line 4,)

Now we can draw trapezoids with relatively big slopes:

-7-

TRAPEZOID 4 28 6
++++

++++++++++
++++++++++++++++

++++++++++++++++++++++
++++++++++++++++++++++++++++

We can also draw "upside-down" trapezoids by using negative

increments.

TRAPEZOID 13 5 -2
+++++++++++++
+++++++++++
+++++++++
+++++++
+++++

It is possible to specify values of /A/, /B/, and /STEP/ that do

not properly define a trapezoid. For example, if the top base

is to be 8 and the bottom base is to be 3, with step size +1,

the drawing process will never terminate by itself. The procedure

TRAPEZOID can easily be mcdified to check for this and all other

nonterminating cases. Discovering and fixing such difficulties

provides good problems for the students as a natural side-effect

of their own work.

The power of the procedures we have just defined is evident from

the ease with which we can use them to draw a large variety of

other figures. Thus, a HEXAGON can be built from two trapezoids;

a DIAMOND from two triangles; a PENTAGON from a trapezoid and a

triangle; an OCTAGON from a trapezoid, a rectangle, and another

trapezoid; and so on. For example, this is a procedure for draw-

ing hexagons, where /A/ is the starting width and /13/ is the

mid-width.

TO HEXAGON /A/ /B/ /STEP/
1 TRAPEZOID /A/ /B/ /STEP/
2 TRAPEZOID (DIFFERENCE OF /B/ AND /STEP/) /A/ (-/STEP/)
END

Here are examples of figures made by such procedures.

HEXAGON 4 16'4

++++
++++++++

++++++++++++
++++++++++++++++

++++++++++++
++++++++

++++

PENTAGON 5 9 2

DIAMOND'7 2

OCTAGON 4 12 4

The:se figure-drawing propedurp.s can themSeles be used as

.construction:eIments. FOr eXaMple, :we,can'stack figures

,gether tO fOrM toWersSuch as tbe follOw'ingone formed by

':hexagons Of increasing

HEX-TOWER 4 8 3

++++
++++++

++++++++
++++++
++++

++++++++
++++++++++
++++++++++++

++++++++++++++
++++++++++++++++
++++++++++++++
++++++++++++
++++++++++
++++++++

++++++++++++++++
++++++++++++++++++
++++++++++++++++++++
++++++++++++++++++++++

++++++++++++++++++++++++
++++++++++++++++++++++++++

++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++
++++++++++++++++++++++++++
++++++++++++++++++++++++
++++++++++++++++++++++
++++++++++++++++++++
++++++++++++++++++
++++++++++++++++

The LOGO procedure for generating this kind of tower follows.

(Note how similar it is in form to many previous ones.)

TO HEX-TOWER /A/ /B/ /NUM/

1 TEST IS /NUM/ 0
2 IF TRUE STOP
3 HEXAGON /A/ /B/ 2

(/A/ and /B/ define the topmost
hexagon, /NUM/ is the number of
hexagons in the tower)

(Draw a hexagon of dimensions
/A/, /B/, 2)

4 HEX-TOWER (PRODUCT OF 2 AND /A/) (Increase the hexagon size and
(PRODUCT OF 2 AND /B/) repeat th, process (/NUM/ 1)

(DIFFERENCE OF /NUM/ AND I) times)
END

An interesting way of generatig more complex symmetric structures

is by using a random process to determine the constituent figures

and their sequencing. We can develop a LOGO program, PATTERN

/NAME/ /NUMBER/, to do this. PATTERN creates a drawing program,

whose name is /NAME/, which uses /NUMBER/ figures to create a

pattern that is symmetric about the horizontal as well as the

vertical. Here, for example, are two especially nice LOGO

procedures created by PATTERN, along with their resulting drawings.

PATTERN "TOTEM" 5

TO TOTEM
1 DIAMOND 3 2

2 TRAPEZOID 9 3 -2
3 HEXAGON 5 25 4

4 TRAPEZOID 3 9 2

5 DIAMOND 3 2

END

TOTEM

+++

+++++++++
+++++++

+++++
+++

+++++
+++++++++

+++++++++++++
+++++++++++++++++

+++++++++++++++++++++
+++++++++++++++++++++++++

+++++++++++++++++++++
+++++++++++++++++

++++++++++++.+
+++++++++

+++++
+++

+++++
+++++++

+++++++++
+

+++

PATTERN "FIGURE-12" 3

TO FIGURE-12
1 TRIANGLE 11 2

2 HEXAGON 15 31 4
3 TRIANGLE 11 -2
END

FIGURE-12

+++
+++++
+++++++
+++++++++
+++++++++++

+++++++++++++++
+++++++++++++++++++

+++++++++++++++++++++++
++++++++++++++++++++++++++

+++++++++++++++++++4+++++++++++
+++++++++++++++++++++++++++

+++++++++++++++++++++++
+++++++++++++++++++

+++++++++++++++
+++++++++++
+++++++++
+++++++
+++++
+++

Using the procedures written thus far, the student can generate

a large number of different geometric shapes, and the writing of

such a sequence of procedures represents a considerable achieve-

ment on his part. The foundations of geometry, however, lie in

the transformation of geometric objects, not merely in their

portrayal. Our next goal, then, is to write procedures for

performing standard transformations of geometric figures. Such

transformations include translation, rotation, and reflection,

both with respect to a given point and with respect to a given

-12-

line. Procedures to generate the union and intersection of the

sets of points defining two geometric objects are also useful.

And we need a procedure DRAW which plots any given set of points.

To write these procedures we need a different representation for

geometric objects, one which can be retained within the computer.

(Clearly we do not have such a representation thus far -- our

current objects are generated and drawn one line at a time.)

Perhaps the simplest such representation is a list of pairs of

numbers, each pair representing one point of the object. Then

it is easy to write procedures, such as the following, which

reflect a set of points about the x-axis.

TO REFLECTX /PAIR LIST/

1 TEST IS /PAIR LIST/ /EMPTY/
2 IF TRUE OUTPUT /EMPTY/

(/PAIR LIST/ is the list of X Y
number pairs)
(Are there any points left on
/PAIR LIST/? If not, terminate
procedure)

3 OUTPUT LIST OF
FIRST OF /PAIR LIST/
NEGATIVE OF SECOND OF /PAIR LIST/
REFLECTX OF (BUTFIRST2 OF /PAIR LIST/)

(Otheryise,.output:a list of the
X coordinate and the negative of
the Y coordinate of the first
number pair on /PAIR LIST/, and
REFLECTX applied to the pair list
obtained by deleting the first

END number pair on /PAIR LIST/)

Thus for example:

PRINT REFLECTX OF "1 2 4 3 7 11 2

1 -2 4 -3 7 -11 2 1

Using this and two similar procedures, one for reflecting about

the 45 degree line through the origin, and the other for reflect,-

ing about the Y-axis, we can now write a procedure for random

generation of figures having eightfold symmetry.

TO EIGHTFOLD /N/ (/N/ is the number of pairs on the
pair list that will be generated)

I MAKE "PAIR LIST" RANDOMLIST OF /N/
(Generate a random list of /N/
pairs, /PAIR LIST/)

2 MAKE "PAIR LIST"
UNION OF (/PAIR LIST/) AND (REFLECT45 OF /PAIR LIST/)

(Form the union of /PAIR LIST/ and
the pair list formed by reflecting
it around the 45 degree line, and
make this the new /PAIR LIST/)

3 MAKE "PAIR LIST"
UNION OF .(/PAIR LIST!) AND (REFLECTY OF /PAIR LIST/)

(Form the union of the new list and
its reflection about the Y-axis

4 MAKE "PAIR LIST"
UNION OP (/PAIR LIST!) AND (REFLECTX OF /PAIR LIST/)

(Do the same with the resulting list
andA.ts reflection about the x-axis)

+5 DRAW ORDER OF /PAIR LIST/
(Put the xesulting pair list in
lexicographic order and plot it
using +,$)

END

EIGHTFOLD generates random drawings such as the following.

+ +
+++

++ ++ + + + +
++ ++

++ ++

+++
+ +

+ + +

Using such basic transformation procedures we can study general

Euclidean transformations. For example, we can develop methods

for determining whether two randomly oriented polygons are

congruent. Proceeding in this fashion we steadily progress from

pre-mathematics to material or genuine mathematical content.

Volume 1, Part 2

LOGO TEACHING SEQUENCE ON LOGIC

Teacher s Text

and

Problems

The LOGO Project

NSF-C 615

Joan D. Lukas:

Georg.e LukaS .

Bplt Berapek andAewman Inc.
. 50 Moulton Street
Cambridge, Mas.s. 02138

22

CONTENTS

0. Introduction

Page

1. Formal Background 1

2. Generalization of Lewis Carroll Diagrams
. 18

3. Generating Logic "Diagrams" 20

4. Marking the "Diagrams" 28

5. Diagrams and Premisses 36

6. Testing Syllogisms 40

7. More General Statement Forms
. 47

8, Generalizing Our Syllogism Tester . . 49

Problems

23

LOGO UNIT ON LOGIC

0. Introduction

Syllogisms formed the central core of logic until they were

pushed aside by the development of mathematical logic in the

Nineteenth Century. We have chosen to focus on them here because

they are accessible without a great deal of formalism and because

syllogistic types of argument occur frequently in everyday

discourse.

This section develops a set of LOGO procedurs which test the
validity of syllogistic arguments. LOGO is peculiarly suited

for such an application because of its non-numerical capabilities
and its procedure-oriented programming heuristic. Algorithms in

everyday language are first developed for each part of the rather

extensive syllogism tester; the translation .of these into LOGO

procedures follows in a very natural manner. The method of

testing syllogisms used is an adaptation of the one presented

by Lewis Carroll in his book "Symbolic Logic".

The ideas underlying this section and the related background in

symbolic logic were provided by Joan Lukas. George Lukas

implemented this treatment in the form of LOGO procedures. 73oth

shared in the actual writing.

1. Formal Background

Many of the inferences made in both formal and informal reasoning

concern the relations among classes of objects. We may say, for
instance, that computers can't think since computers are machines
and machines can't think. While one may dispute one or the other
of the premises, the structure of this argument is unassailable:

(1) All A are B
(2) All B are C
(3) .% All A are C

Once one has accepted (1) and (2), (3) inevitablY follows.

If we had made a different statement about the classes, say that
they overlap rather than that one is contained in the other, the
argument is changed radically. We may not conclude that some
babies are fifty years old if we know that some babies are male
and some males are fifty years old. Here the structure of the
argument is

(4) Some A are B
(5) Some B are C
(6) .% Some A are C

In this case (6) does not follow from (4) and (5).

Statements which express relations between classes, such as "All
computers are machines," and "Some babies are male," are known as
categorical statements. Arguments such as (1) (2) (3) and
(4) (5) - (6), whose premises and conclusions are cateForical

statements, are (categorical) syllogisms. The study cf such

statements and arguments and in particular the singling out of
valid forms of syllogisms is a central concern of classical logic.

Categorical statements were' first studied systematically by
Aristotle who recognized four types of such statements. One of
these asserts the containment of one class in another -- "All
cats are animals" or "It always rains on Tuesday" (which can be
translated as "Every Tuesday is a day when it rains"). By negat-
ing such a statement, we obtain a second type "Not all cats are
animals" or "It doesn't always rain on Tuesday".

A third type of statement asserts that two classes have nothing
in common: "No cats are dogs" "It never snows in August."
Note that this statement is not equivalent to the statement above,
i.e., "It never rains on Tuesday" is a stronger assertion than
"It dcesn't always rain on Tuesday." The fourth type of statement
asserts that two classes do have something in common: "Some cats
like milk" (or "Some cats are things that like miZk").

The meaning of these types of statements, and the relations among
them, can be made clearer by a diagrammatic representation.
Consider the statement "Some cats are animals". We can imagine
the universe partitioned into two classes -- cats and noncats.

CR-TS

./.1oN-CRTS

. The universe can also be divided into animals and nonanimals.

Lewis Carroll devised a means of representing the four possible
classes obtained by combining these two partitions

COTS

r)PJ IN 0,4

C I4 I

CI1 I, -.
Hisiti 1011-S

1,,,4cr4-

sirlItgl-N.

hirN-

and using markers to indicate the existence or nonexistence of
members of each class, as follows. An x in a region indicates

that the condition represented by that region is never satisfied,
while a indicates that there are some objects (at least one
object) which fall into the class. Thus, in the diagram above,
an x in the upper right region indicates

N

GA-r$

nt4ININ-5

'that there are no cats which are not animals and a O in the upper
left region indicates that there are cats which are animals.

Similar diagrams can be used for any two classes A and B. If

the right-hand.side represents A, the left not A, the upper-half
B, and the lower not B, we get

n $
.."

A ,

not 14,
6

0o t 0,
no t 13

Then, "Some A are B" can be represented by

"Some A:are not B" by

'1\1() are B"-is represented. by

In drawing the diagram corresponding to the statement "All A are
B", we have to Lake a decision. It is clear that, if all A are B
then no A are nct B. So the diagram should have an x in the
upper right region.

Is this:the Complete diagram for the statemer4t, or does it also
imply that there are some A's Which are 'B's,'so that aHo Would
appear in the upper left region?

The circle seems to be appropriate because, if all A s are B's,
than certainly some A's are B's. A difficulty arises, however,
when we consider the possibility that there might not be any A's
at all. Then "All A are B" might be taken as vacuously true.
But, "Some A are B" would be false, since it implies the existence
of A's.

Consider, for example, the statement "All round squares are pink."
In most circumstances we would dismiss this statement as nonsense
on the ground that there are no round squares and so there is no
point in saying anything about them. If we were forced to assign
a truth value to the statement, we might interpret it to mean
both that round squares exist and every one of them is pink. Under
this interpretation, the statement is false. Alternatively, we
might rule it to be vacuously true, since it asserts that the
class of round squares is contained in the class of pink objects
and since the class of round squares is empty, it is contained in
every class.

In mathematics a statement of the form "All A are B" is usually
not taken to imply the existence of A's. We can talk meaningfully
about the class of counter examples to Fermat's last theorem*
without knowing whether any such counter examples exist. In
ordinary language, however, this view can lead to absurdity. For
.instance, we would not want to accept the statement "All pink
elephants are two feet tall" as true merely on the ground that
there are no pink elephants. So we will take the diagram for
"All A are B" to contain both an x in the A,not B region and a
is in the .A,B region, that is, the statement is taken as implying
both "Some A are B" and "No A are not B".

In the study of categorical syllogisms, we are concerned with
three classes of objects rather than two. The Lewis Carroll
diagram is extended to three classes by dividing it into an
inner square and an uuter region, the inner square representing
the third class, C, and the outer region the complement of this
class, not C.

0,8
niot G

A not
n o't

8
C-

FI , a,

C

0, Jai A
C

n ot
8, not'

n o J- A,
6 Cs

not A,
ne'r r8,

C.

E!,ot C
A1

C
nat

110*
n

Fermat's last theorem asserts that there are no integers x, y,
z, and n with n>2 satisfying the equation x n+yn=zn.

The diagram corresponding to the statement "No A are B" now
becomes

and "No B are C" has the diagram

Clearly, two regions are excluded in each case.

The statement "Some A are B" is now more difficult to diagram.
It does not tell us whether the A-B objects belong to C or to
its complement. We indicate this uncertainty by placing the
circle on the line dividing the two regions A,B,C, and A,B,not C.
It is "sitting on the fence".

Further statements may tell us which region the circle belongs in.
For instance, "No B are C" would eliminate the inner region and
force the circle into the upper left corner. The diagram result-
ing from these two statements is

We have interpreted "All A are B" to mean both "No A are not B"
and "Some A -axe B" 'so the corresponding diagram is

We can now use these diagrams to check the validity of syllogistic
arguments. A syllogism is valid if the premises imply the con-
clusion. In terms of diagrams, this means the diagram obtained
by combining the premises contains x's and 's wherever the
conclusion's diagram does. The first syllogism we discussed was

(1) All computers aremachines
(2) Machine8 can't think
(3) :. Computers 'can't think

which was formalized as

(1) All A are B
(2) All B are C
(3) All A are C

by setting A = the_class of computers
B = the Class of machines
C = the class of things that Can't think.

Note that we have made explicit the "all" which was implicit in
the statements and rewritten the second as "All machines are
things that can't think". This is the usual procedure in treat-
ing syllogisms formally. If the verb in a statement is different

from "are" or "is", we translate the predicate into the form
nare things that Tt

, e.g., "Birds fly" becomes "Birds are
things that fly". We treat all statements in syllogisms as being
about classes rather than about actions. If we form the diagram

(1) becomes

MAC 14 INE ..5

ot-t TC R. 5

No-c-
cdoviPvTeR5

M IN S5

N a -1 74-1,

C nal?'

r16.5 11-4R1i 14 i /4--,
t ni G. S

k

t4
t

CA
-TH

)

NIT
inivc

1

and (2) is

When these two diagrams are combined the x in the upper left corner
forces the circle intb the center square.

The combined diagram becomes

xix
0 x

x

(The lower circle
does not add any
anformation to
the diagram)

The conclusion of .the argument is "All computers are things that
can't think" which has the diagram

For this to be implied by the premises, the premises must give an
x in the indicated places and a o in one of the two regions which

intersect the circle in the diagram (or a circle intersecting
both). As the combined diagram does satisfy these requirements,
this syllogism is valid.

The same argument might be cast more naturally in a different

syllogistic form if we make A = computers, B = machines, as
before, but C = things that can think. Now statements 2 and 3
are replaced by (2') No machines are things that can think

(31) No computers are things that can think.

The form of the argument now becomes

All A are B
No B are C
.% No A are C

If we now construct the diagram as follows:

COMPOTLR:43

Nto7
crip;-T ERS

(1) is represented by

ritIc14 E 5
NOT Oticl41r4 ES

HoT Tt4)N6-5
cpri

;'14RT

-rtAi
T

N 6-5
1-414T

C
-Tp4I

AN
Nit<

and (2') by

36

The combined diagram is

I x
X

I

X

The diagram of (3') is

The syllogism is valid since the combined diagram does contain x's
in the two indicated places.

Our second syllogism was

(4) Some babies are male
(5) Some males are fifty years old
(6) :. Some babies are fifty years old

This has the form

Some A are B
Some B are C
.. Some A are C

where A is the class of babies, B the class of males, and
C the class of fifty-year-old people.

The diagram is

61451ES

NoT 13;4 tales

(4),is represented by

NOT MAI-C.

NoT F1

OLD
T'l YeARS

Pif-1"(

lEOR$
pLO

and (5) by

The combined diagram is

The diagram for (6) is

For the argument to be valid, the combined diagram must contain
a circle in one of the two areas which intersect the circle in
(6) or a circle intersecting both. This is not the case. In
fact the combined diagram is consistent with

which does not satisfy the conclusion.

Some inferences which contain statements about particular objects
rather than classes can be treated as categorical syllogisms.
For example,

John is a boY
All boys like ice cream

John likes ice cream

cans be formalized as

All A are B
All B are C

All A are C

if we take A to be the class consisting of the single object
"John", B the class of boys, and C the class of people who like
ice cream.

An argument with a particular premise which is invalid is
John likes ice cream
Some people who like ice cream are fat
. % John is fat

taking A = "John", as before,
B = people who like ice cream,
C = fat people.

This argument can be put in the form
All A are B
Some B are C

All A are C

(Here we are using our knowledge that "John" usually refers to a
person rather than a dog or some other thing.)

ThiS Syllogism can be seen to be invalid by constructing the
Lewis Carroll diagrams for these three statements.

A syllogism is valid or invalid because of its form, not because
, of tne truth or falsity of its premises and conclusion. For
instance, the syllogism

All cows are things that fly
All things that fly are birds
.% All cows are birds

is of the form All A are B
All B are C
All A are C

and hence valid, although its premises and conclusion are all
false.

On the other hand, Some people are men
Some men have beards
.. Some people have beards

is of the form Some A are B
Some B are C
.% Some A are

which is an invalid syllogism, even though its premises and
conclusion are all true.

A syllogism of a given form is invalid if it is possible to
produce another syllogism of'Ahe same form with true premises
and a false conclusion. One can prove a syllogism invalid by
generating counter-examples in this way.

Syllogistic arguments play a very important role in reasoning but

are usually not stated explicitly in the forms discussed above.

2. Generalization of Lewis Carroll Diagrams

It is possible to extend Lewis Carroll diagrams to relations

among four or more classes, so that we might treat extended

syllogisms such as:

Some people are babies.
All babies are young animals.
All young animals are delicate.
:.Some people are delicate.

However, when the diagrams are thus extended, they lose their
transparency. The feature which makes them especially useful for

the three classes of ordinary syllogisms is the fact that an 0

"sitting on the fence" actually overlaps contiguous areas. This
is not always possible for diagrams representing a larger number
of classes.

For a generalized syllogism, which may contain a large number of

classes and premises, we will replace the Lewis Carroll diagram

by a linear array, simply a list of all possible combinations of
classes and class complements. For example, the list for two
classes, A B,

A B

A hot a

notA B
notA not7B

4 2

18--

The list corresponding to three classes has eight entries and the
liEt for four classes has sixteen. The markers which were used
in the Lewis Carroll diagrams are now placed next to the corre-
spondIng entries in the list. Thus, we represent the statement
"no A are B" by placing an X next to each entry in the list
containing A and B unnegated.

e.g.,ABCX
A B not-C X

The statement "sr- e A are B" was previously represented by a
circle on the fence between the regions A, B, C and A, B, not-C.
Now the regions have been replaced by entries on a list with no
topological significance. Further, there may be more than three
classes, so that the statement above might refer to several
entries, e.g., A B C D, A B C not-D, A B not-C D, and A B not-C
not-D. We need a new nongraphical notation to represent this
situation. We can put a marker, say 1, next to each entry
representing a class with A, B unnegated. In the above example,
each of the four entries given would receive a "1". If another
statement, say "some B are not-C", put another 0 "on the fence",
we might use a "2" to indicate each class intersected by this
new 0.

The increase in number of classes also forces some operational
changes. In the Lewis Carroll diagrams an 0 on the fence always
intersected exactly two regions. If a later statement put an X
in one of the resions, the 0 was automatically taken off the fence
and placed in the other region, since there was no other possibil-
ity. This is no longer the case when a "fence" joins more than
two regions. In the above example, if an X were placed next to
A B C D (say by the statement "no C are D"), the 1 next to this
entry would be eliminated, but three l's would still remain.

Thus, the 1 is still on the fence. It is not replaced by an 0
unless a single 1 remains on the list.

3. Generating Logic "Diagrams"

We are ready to translate the processes involved in the use of
generalized Lewis Carroll diagrams into the form of computer
programs. There are four major parts to this undertaking. First,
in this section, we will discuss the creation of generalized
diagrams, given a list of objects. Then we can write procedures
which It mark" diagrams to represent the statements given as their
input. Once this is done, and a diagram representing the set of
all premisses is made, we can then test the validity of a further
statement with respect to these premisses. These three preceding
steps, in fact, create a complete, consistent structure. Such a
structure, however, will only accept statements and objects in a
rigidly standardized form. Our fourth and last step will be,
therefore, to write a set of procedures which enable us to deal
with a more "relaxed" set of statements and objects.

We have seen how the Lewis Carroll diagrams can be generalized,
by simply making a list of the names of the regions, without plac-
ing any topological interpretations on such a list. The "contents"
of each region can then be denoted simply by associating these
with the appropriate name. This is done most simply by making
the contents the THING of the region name. The list of region
names is best written as a LOGO sentence wi commas (or some

414

other demarcation) between the names. In that way, we can still
use sentences for region names. This convention does not permit
the individual objects within a region name (NOT GREEN CATS, for
example) to be sentences, but, rather than use another symbol as
a further level of demarcation, we will make these objects into
LOGO words by putting dashes in place of the spaces within them.
(NOT-GREEN-CATS, for example). Thus, if we are given a set of
objects we first insert dashes in each:

TO DASH /OBJECT/
10 TEST WORDP /OBJECT/
20 IF TRUE OUTPUT /OBJECT/
30 OUTPUT DASHSENTENCE /OBJECT/
END

TO DASHSENTENCE /SENTENCE/
10 TEST IS COUNT /SENTENCE/ 1
20 IF TRUE OUTPUT FIRST /SENTENCE/

30 OUTPUT WORD WORD
FIRST /SENTENCE/

DASHSENTENCE BUTFIRST /SENTENCE/
END

+PRINT DASH "IS A MAN"
IS-A-MAN
+PRINT DASH "ARISTOTLE"
ARISTOTLE

(If there is just one word
in /SENTENCE/, we get this,
remaining word using FIRST)

The really important task, at this early point, is construction
of the region name list. We will have a list of objects, each
of which is a LOGO wc-'d (we ensure this by using DASH). The
procedure REGIONLIST takes /OBJECTS/ as input-and outputs the
list of all pbssible combinations, each containing every object

-21-

or its negation (NOT-object). These possibilities are to be
separated by commas. Let us consider an example where the objects
are taken as A, B, C and we place each possibility on a separate
line.

A B C
A B NOT-C
A NOT-B C
A NOT-B NOT-C
NOT-A B C
NOT-A B NOT-C
NOT-A NOT-B C
NOT-A NOT-B NOT-C

There are a number of ways to systematically generate this set
of combinations. Furthermore, the result of each method can be
looked at in different ways, depending on the patterns one sees
in the result. The scheme used in the example above was tn find
all possibilities, changing the rightmost character (lines 1, 2),
to repeat these possibilities, having changed the next character
(lines 3 and 4), and so on. This process is very reminiscent of
counting, if one thinks of ar automobile odometer, for exaMple,
and there is, in fact, an equivalence between the scheme-used and
counting in binary mode. Counting to base 2 is governed 8y the
rules 0 + 0 = 0 0 + 1 = 1 + 0 = 1 and 1 + 1 = 10 where "carrying"
is exactly as in base ten. Thus, putting zeros in front of the
binary numbers (to give 3 ,digits) as we count from 0 to 7,

(210

01
010
011
100
101
110
111

The zeros and ones exactly reproduce the pattern of "NOT"s and
absence of NOTs if we make the correspondence 0--->absence of NOT

46
-22-

Thus, counting in binary (which is very easy to program) gives

us the pattern we need for our combination generating problem.
To get the region name list for /N/ objects we need only count
from 00...0 to 11111...1 in binary, then use each number to create

a region name, using the correspondence given above. Thus, we
write a procedure, which, given a binary number, outputs the next
binary number.

TO BINARYNEXT /NUMBER/
10 TEST EMPTYP /NUMBER/
20 IF TRUE OUTPUT I
30 TEST ZEROP LAST /NUMBER/ (If the last digit is zero, just
40 IF TRUE OUT:PUT WORD change it to 1

BUTLAST /NUMBER/
1

50 OUTPUT WORD (If the last digit is 1 (the
BINARYNEXT BUTLAST /NUMBER/ only other possibility) change
0 it to zero and add 1 to the

binary number, BUTLASTEND /NUMBER/.)

This 1.,.f'ocess continues until either a zero is found in which case
it is replaced by a 1, or until the last digit of the original
numbr has been passed,in which case a 1 is placed in front.

+PRINT BINARYNEXT 00
01
4-PRINT BLNARMIEXT 01

+PRINT BINARYNEXT 11
100

We want to start the process with /N/ zeros so,

TO ZERO /N/
10 TEST IS /N/ 0
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT WORD OF

0

ZERO (DIFF /N/ AND 1)
END

4-PRINT ZERO "3"
000
÷PRINT BINARYNEXT BINARYNEXT ZERO 3
010

We use these two procedures in two further procedures, one of
which, REGIONLIST, starts things off, and the other, ADDTOLIST,
adds one combination at a Ume o the list of region names.

TO ADDTOLIST /OBJECTS/ /BINARY #1
10 TEST GREATERP (COUNT /BINARY it/)

(COUNT /OBJECTS/) (If the number of digits in the20 IF TRUE OUTPUT /EMPTY/ binary number exceeds the number
of objects, we are finished)

30 OUTPUT SENTENCE SENTENCE
NOTT /BINARY it/ /OBJECTS/ (NOTT gives the combination of

/OBJECTS/ corresponding to /BINARY #/)ADDTOLIST /OBJECTS/
(BINARYNEXT /BINARYW

END

The procedure NOTT /NUMBER/ /LIST/, which applies the correspondence
between NOTs and a binary number to /LIST/ is straightforward: If
the first digit of /NUMBER/ is 0,we leave the first element of
list unchanged. Otherwise, if it is 1, we put a "NOT-" in front
of it. We repeat the process until the list is exhausted.

TO NOTT /NUMBER/ /LIST/
10 TEST IS /LIST/ /EMPTY/ (If the list is /EMPTV, we are
20 IF TRUE OUTPUT /EMPTY/ finished)
30 TEST IS FIRST /NUMBER/ 0
40 IF TRUE OUTPUT SENTENCE

FIRST /LIST/
NOTT (BUTFIRST /NUMBER/) (BUTFIRST /LIST/)

50 OUTPUT SENTENCE
WORD "NOT-" (FIRST /LIST/)
NOTT (BUTFIRST /NUMBER/) (BUTFIRST /LIST/)

END

÷FRINT NOTT "011" "DOGS CATS ELEPHANTS"
DOGS NOT-CATS NOT-ELEPHANTS

Now, REGIONLIST is easy:

TO REGIONLIST /OBJECTS/
10 OUTPUT ADDTOLIST /OBJECTS/ (ZERO OF COUNT OF /OBJECTS/)
END

4PRINT REGIONLIST "A B C"
A B C A,B NOT--C , A NOT...E5 C p A NOT-B NOT-C NOT-A B C a NOT-A B
NOT..-C NOT...A C o NOT-A NOT...B NOT...0

4-PRINT REGIONLIST "CATS DOGS MONKEYS ELEPHANTS CAMELS"
CATS DOGS MONKEYS ELEPHANTS CAMELS , CATS DOGS MONKEYS ELEPHANTS
NOT-CAMELS , CATS DOGS MONKEYS NOT.-ELEPHANTS CAMELS CATS DOGS MONKEYS
NOT...ELEPHANTS NOT...CAMELS o CATS DOGS NOTMONKEYS ELEPHANTS CAMELS CATE
DOGS NOT-MONKEYS ELEPHANTS NOT-CAMELS 4 CATS DOGS NOT-MONKEYS
N OT.-ELEPHANTS CAMELS CATS DOGS NOT-MONKEYS NOT...ELEPHANTS NOT-CAMELS P
CATS NOT-DOGS MONKEYS ELEPHANTS-CAMELS p CATS NOT...DOGS MONKEYS ELEPHANTS
NOTCAMELS CATS NOT....DOGS MONKEYS NOT-ELEPHANTS CAt.iELS CATS NOT-DOGS
MONKEYS NOT...ELEPHANTS NOT...CAMELS CATS NOT...DOGS NOTMONKEYS ELEPHANTS
CAMELS/p CATS NOT...DOGS NOTMONKEYS ELEPHANTS NOT-CAMELS p CATS NOT...DOGS
oi0T...MONKEYS NOT-ELEPHANTS CAMELS a CATS NOTDOGSNOTMONKEYS
N 01...ELEPHANTS NOT-CAMELS p.NOTCATS DOGS MONKEYS ELEPHANTS CAMELS
NOI-CATS DOGS MONKEYS ELEPHANTS NOT...CAMELS , NOT-.CATS DOGS MONKEYS .

NOTELEPHANTS CAMELS p NOT...CATS DOGS MONKEYS NOT-ELEPHANTS NOT-CAMELS
NOT...CATS DOGS NOT-MONKEYS ELEPHANTS CAMELS p NOT-CATS DOGS NOTMONKEYS
ELEPHANTS NOTCAMELS p NOT-CATS DOGS NOT...MONKEYS NOTELEPHANTS CAMELS
NOT....CAIS DOGS NOT...MONKEYS NOT...ELEPHANTS NOT..CAMELS NOTCATS NOT...DOGS
MONKEYS ELEPHANTS CAMELS NOT...CATS NOTDOGS MONKEYS ELEPHANTS
N OT...CAMELS NOT-CATS NOT-DOGS MONKEYS NOT...ELEPHP,NTS CAMELS NOT-CATS
NOT...DOGS MONKEYS NOTELEPHANIS NOTCAMELS NOT...CATS NOT--DOGS
NOT-.MONKEYS ELEPHANTS CAMELS p NOT...CATS NOTDOGS NOT...MONKEYS ELEPHANTS
NOT...CAMELS o NOT-CATS NOTDOGS NOT-MONKEYS NOT-ELEPHANTS CAMELS o

.NOTCATS NOT...DOGS NOT-MONKEYS NOT...ELEPHANTS NOT...CAMELS p

This completes the first stage of our program--we can easily
create region name lists. These lists are not easy to work withdirectly in LOGO since the separators of interest are commas, andnot spaces. FIRST, for example, will give us the first element
of the first region name. We therefore write a few simple
procedures which will be useful in working with our new kind oflist.

TO PULL /LIST/
10 TEST EITHER

EMPTYP /LIST/
IS FIRST /LIST/ ","20 IF TRUE OUTPUT /EMPTY/

30 OUTPUT SENTENCE
FIRST /LIST/
PULL BUTFIRST /LIST/END

(gives everything to first comma)

TO REST /LIST/
(gives everything after first comma)10 TEST EITHER

EMPTYP /LIST/
IS FIRST /LIST/ ","20 IF TRUE OUTPUT BUTFIRST /LIST/30 OUTPUT REST (BUTFIRST /LIST/)END

TO NUMBER /LIST/
(counts "region names" by counting10 TEST EMPTYP /LIST/ commas -- this is correct since20 IF TRUE OUTPUT 0 the list ends with a comma.)30 TEST IS (FIRST /LIST/) ","40 IF TRUE OUTPUT SUM

1

NUMBER (BUTFIRST /LIST/)50 OUTPUT NUMBER (BUTFIRST ILISTI)END

These procedures enable us, for example, to write a simple procedure
NICEPRINT to print the list of regions "nicely" by putting each ona separate row. To make NICEPRINT even more useful, next to each

-26-

region we print its "contents",.given by the THING of the region
name. We have not yet "marked" any of the regions, so at the
moment, the contents are all /EMPTY/.

TO NICEPRINT /LIST/
10 TEST EMPTYP REST /LIST/
20 IF TRUE STOP
30 TYPE PULL /LIST/
40 TYPE ","
50 PRINT THING (PULL /LIST/)
60 N10EPRINT (REST /LIST/)
END

(TYPE prints but does not go to
the beginning of the next line)

4-NICEPRINT REGIONL1ST "FRED HARRY JANE SALLY"
FRED HARRY JANE SALLYs"
FRED HARRY JANE NOTSALLY,
FRED HARRY NOT'jANE SALLY,
FRED HARRY NOTJANE NOTSALLY,
FRED NOTHARRY JANESALLY,
FRED NOTHARRY JANE.NOTSALLY,
FRED NOT...HARRY NOTJANE SALLY,
FRED NOTHARRY NOTJANE NOTSALLY,
NOTFRED HARRY JANE SALLY,
NOT...FRED HARRY JANE NOTSALLY,
NOTFRED HA5ORY NOT...JANE SALLY,
NOTFRED HARRY NOTJANE NOT7SALLY,
NOTFRED NOTHARRY JANE SALLY,
NOTFRED NOTHARRY JANE NOT...SALLY,
NOTFRED NOTHARRY NOT...JANE SALLY,
NOTFRED NOT...HARRY NOTJANE NOTSALLY,

4. Marking the "Diagrams"

There are two different operations required to represent a state-
ment, or sequence of statements on a diagram, whether it is of
the Lewis Carroll type or a more general list one. We must be
able to "mark off" regions, by placing X's in them. We do this
by making the THING of the region name "X". We also must be able
to denote occupancy or possible occupancy of a region. If there
is only one available region satisfying the given constraints

in the statement(s), an "0" is placed within it. If several
regions are possible, they are ''joined" by placing the same number
in the THING of each. Any conflict between Os and Xs means that
a contradiction has been found.

Let us first consider the algorithm required for "joining" or,

in terms of Lewis Carroll diagrams, placing an "0" on the fence.

We take each region name and determine whether it contains the

combination of objects and their negation as in the statement we

are joining. For example, given the three objects A, B, C and
the list of 8 names that they generate, we determine that the
elements A NOT=B are contained-within the two regions A NOT-B C,
A NOT-B NOT-C. We make a list of all such "valid" names, which
do not contain an "X". If there is exactly one such region, we
occupy it by adding an "0" to its THING. If there is more than
one region possible, we include the current join number within the
THING of each. Of course, if no regions are possible, a contra-
dictory set of premisses is involved and we can go no further.

Our first step is to write a procedure SUBSETP, which, given two
sets /A/ and /B/ as inputs, outputs TRUE or FALSE as all elements
of /A/ are or are not contained among those of /B/. SUBSETP in

52

-28-

turn depends on CP /EL/ /LIST/ which determines whether a given,
single element /EL/ is contained in a given list, /LIST/.

TO SUBSETP /A/ /B/
10 TEST EMPTYP /A/
20 IF TRUE OUTPUT "TRUE" (is the first element of /A/ contained30 TEST CP (FIRST /A/) /B/ in /3/?)
40 IF FALSE OUTPUT "FALSE" (if not /A/ is not a subset of /3/)50 OUTPUT SUBSETP (BUTFIRST /A/) /B/ (if yes, continue the process

with the rest of /A/)
END

TO CP /ELEMENT/ /LIST/
10 TEST EMPTYP /LIST/ (have we gone through the whole list?)
20 IF TRUE OUTPUT "FALSE" (if so /ELEMENT/ is not contained)
30 TEST IS /ELEMENT/

FIRST /LIST/
40 IF TRUE OUTPUT "TRUE"
50 OUTPUT CP /ELEMENT/ (BUTFIRST /LIST/)
END

+PRINT SUBSETP "A B C D" "D C B A"
TRUE
+PRINT SUBSETP "PLEAT" "ELEPHANT"
TRUE

We next write the main procedure JOIN /ELEMENTS/ /JOIN #/ /LIST/,
and its sub-procedures. JOIN is virtually a line by line trans-
lation of the joining algorithm just stated.

TO JOIN /ELEMENTS/ /JOIN #/ /LIST/
10 MAKE "COMMON REGIONS" COMMON OF /ELEMENTS/ /LIST/

(make a list of regions on /LIST/ without "X"s, having
/ELEMENTS/ as subset)

20 TEST IS NUMBER /COMMON REGIONS/ 0
30 IF TRUE EXIT "CONTRADICTION" (EXIT is a LOGO built, in which

halts execution and causes its
input to be printed)

40 TEST IS NUMBER /COMMON REGIONS/ 1
50 IF TRUE OCCUPY /JOIN ff/ (PULL /LISTI)

(if there is.exactly one region,
place an "0" wihin it)

60 IF TRUE STOP
70 INCLUDE /JOIN if/ /COMMON REGIONS/ (otherwise place /JOIN #/ within

each of the common regions.)
END

50
29

The procedures remaining to be written are COMMON, OCCUPY and
INCLUDE, all mentioned in our description of the joining algorithm.

TO COMMON /ELEMENTS/ /LIST/
10 TEST EMPTYP /LIST/
20 IF TRUE OUTPUT %EMPTY/
30 TEST BOTH

SUBSETP /ELEMENTS/ (PULL /LI.ST/)
NOT CP "X" (THING OF PULL /LIST/)

40 IF TRUE OUTPUT SENTENCE SENTENCE
PULL /LIST/
TI IT

COMMON /ELEMENTS/ (REST /LIST/)

50 OUTPUT COMMON /EL/ (REST /LIST/)
END

(PULL /LIST/ is the first
region name on /LIST/. If
/ELEMENTS/ is a subset of
the first region name and
the region does not contain
"X", add the first region
to the output list)
(Otherwise, just repeat
rest of /LIST/)

NOT, on line 30 simply outputs the negation of its irput,

TO NOT /INPUT/
10 TEST IS INPUT"TRUE"
20 IF TRUE OUTPUT "FALSE"
30 OUTPUT "TRUE"
END

The following example illustrates the use of COMMON.

.-MAKE "REGIONS" REGIONLIST ''CATS HATS BATS"
4-NICEPRINT /REGIONS/
CATS HATS BATS.
CATS HATS NOT-BATS.
CATS NOT-HATS BATS.
CATS NOT-HATS NOT-BATS.
NOTCATS HATS BATS.
NOT-CATS HATS NOT.-BATS,
NOT-CATS NOT-HATS BATS.
NOT-CATS NOT-HATS NOT-BATS.
.-PRINT COMMON "CATS HATS",/REGIONS/
CATS HATS BATS CATS HATS NOTBATS
e-PRINT COMMON "NOT-BATS" /REGIONS/
CATS HATS NOT-BATS CATS NOTHATS NOTBATS NOT.-CATS HATS NOT-BATSNOT--CATS NOT...HATS

We look ahead and write a version of OCCUPY which is just a little
more powerful than we require at the moment. Right now, we need
only have OCCUPY place an 0 in the THING of the region name given
as input. Later, however, we will also want to change a "join"
to an "0" when marking "X"s reduces the number of possible regions
to 1. In this latter case we want to DELETE an inputted "join
number" as well as write in an "0".

TO OCCUPY /JOIN 4/ /REGION/
10 MAKE /REGION/

SENTENCE
"0"
DELETE /JOIN 4/ (THING OF /REGION/)

END

DELETE goes through /LIST/, deleting each occurrence of /ELEMENT/.

TO DELETE /ELEMENT/ /LIST/
10 TEST EMPTYP /LIST/
20 IF TRUE OUTPUT /EMPTY/
30 TEST IS /ELEMENT/ (FIRST /LIST/)
40 IF TRUE OUTPUT DELETE (BUTFIRST /LIST/)
50 OUTPUT SENTENCE

FIRST /LIST/
DELETE (BUTFIRST /LIST/)

END

4-DELETE "B" "A B C B"
A C

To complete the joining algorithm we need only write INCLUDE
/NUMBER/ /LIST/. INCLUDE simply includes /NUMBER/ a- a member
of the THING 'of each region name on /LIST/.

TO INCLUDE /NUMBER/ /LIST/
10 TEST EMPTYP /LIST/
20 IF TRUE STOP
30 MAKE PULL /LIST/

SENTENCE
THING OF PULL /LIST/
/NUMBER/

40 INCLUDE /NUMBER/ (REST /LIST/)
END

And we have completed our implementation of the joining algorithm.
We try it out; using theaist /REGIONS/ me generated just before:

a-JOIN "CATS HATS" I /REGIONS/
a-JOIN "CATS NOT-BAYS" 2 /REGIONS/
4-NICEPRINT /REGIONS/
CATS HATS BATS,I
CATS HATS NOT-BATS,I 2
CATS NOT-HATS BATS,
CATS NOT-HATS NOT-BATS,2
NOT-CATS HATS BATS,
NOT-CATS HATS NOT-BATS,
NOT-CATS NOT-HATS BATS,
NOT-CATS-NOT-HATS NOT-BATS,

The other operation we will have to perform on our extended
syllogism diagrams is that of "marking off" regions to indicate
the impossibility of their being occupied. As in the case of
joining, we will generally have several regions to be marked off,as the result of a given premiss, each containing the elements
specified in the premiss. If a region does not contain anything,
we need merely put an "X" in it. If the region contains "0", we
have a contradiction. The only difficult case is when the region
contains one or more join numbers. When this is true, we us,- a
procedure UNJOIN to "remove" all joins from this region. To
remove each join number, /JOIN #/, we make a list, using jOINLIST,of all other regions containing /JOIN #/. If there is exactly one
region on this list, /JOIN #/ there is replaced by "0". If

-32-

there is more than one region on the list, these other regions
are not affected. In either case /JOIN #/ can then be removed
fvom the given region. When all join numbers have been removed
from te given region, an "X" can be inserted.

For example, using the small region list corresponding to "A B",
marking off all regions containing the element "A" in

A B ,

A NOT-B , 1
NOT-A B , 1

NOT-A NOT-B ., 1

results in

A B X
A NOT-B , X
NOT-A B A 1
NOT-A NOT-B A 1

and, doing the same in

A B , 1
A NOT-B , 1

NOT-A B , 1

NOT-A NOT-B ,

results in

A B , X
A NOT-B , X
NOT-A B , 0
NOT-A NOT-B ,

-33-

